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The reaction of diphenyl sulfone with 2,3-dibromophthalazine-1,4-dione in the presence of n-butyllith-
ium gave a spiro-9H-thioxanthene-10,10-dioxide derivative in 45% yield, the structure of which was
proved by X-ray crystallography.

� 2010 Elsevier Ltd. All rights reserved.
Xanthenes and spiroxanthenes are important and versatile
compounds in organic chemistry. Amongst them are, for example,
rhodamine-based compounds such as 1 and its analogues, which
are used as fluorescent chemosensors,1 electrochromic materials,2

photosensitisers3 and as sensitisers of photopolymer materials.4

The sulfur analogues, spirothioxanthenes, have also been widely
described,3 including thiofluorescein (2)5 and the photochromic
thioxanthene-10,10-dioxide derivative 3,6 which was obtained by
oxidation of the thioxanthene precursor. The spirothioxanthene
skeleton is usually synthesised either starting from thioxanthone,5

or from diphenyl sulfide and phthalic anhydride.7 Herein, we re-
port a novel route to the spirothioxanthene system, as exemplified
by the synthesis of compound 6.

X RR

1 X = O; R = NEt2
2 X = S; R = OH 3

S
O O

OO

O

In continuation of our studies on new diarylsulfone building
blocks for conjugated oligomers,8 we reacted diphenyl sulfone (4)
with 2,3-dibromophthalazine-1,4-dione (5), which was previously
synthesised from phthalhydrazide and zinc bromide under the
ll rights reserved.

ce).
mediation of lead(IV) acetate,9 in the presence of n-butyllithium.10

A single product was obtained in 45% yield, the structure of which
we could not unambiguously assign based on NMR spectroscopic,
mass spectrometric and IR spectroscopic data. X-ray analysis of a
single crystal revealed the spirothioxanthene structure 6 (Fig. 1).11

From directly comparable experiments using 1, 2, 4 and
10 equiv of n-butyllithium, the highest yield was obtained with
4 equiv. A possible mechanism for the formation of 6 is shown in
Scheme 1. Lithiation of 4 and reaction with 5 followed by loss of
bromide, as shown in A, would yield an intermediate which could
undergo a second lithiation followed by spirocyclisation and loss of
dinitrogen and bromide, as shown in B, to give the product 6. The
bromine substituents on 5 are necessary for the reaction to pro-
ceed, which is consistent with the mechanism postulated in
Scheme 1. Using 2,3-dihydrophthalazine-1,4-dione, instead of 5,
gave no product; and unreacted starting materials were recovered.
Figure 1. X-ray molecular structures of 6 (left) and 7 (right) (thermal ellipsoids at
50% probability level).
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Scheme 1. Postulated mechanism for the formation of compound 6, followed by reduction to 7.
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The attempted reduction of 6 with lithium aluminium hydride
gave exclusively the unreacted starting material. Trialkylborohy-
drides are more powerful reducing agents. Compound 6 was, there-
fore, treated with lithium triethylborohydride (Super-Hydride),
which gave the diol product 7 in 74% yield.12 Initial NMR spectro-
scopic and mass spectrometric data did not confirm the structure
of product 7. Only one of the two OH protons gave a visible signal
in the 1H NMR spectrum [dH 4.50 (s, 1H) exchanged with D2O shake]
and the highest observed mass peak was at m/z 334 (EI mode) which
can be attributed to the loss of water from 7. Subsequent mass spec-
tra (ES mode) showed the [M+Na]+ ion for 7. For a reliable determi-
nation of the structure, crystals were grown for X-ray analysis
(Fig. 1), which unambiguously proved the formation of compound
7. This is in agreement with the work of Brown et al., who investi-
gated reactions of trialkylborohydrides, in particular, lithium trieth-
ylborohydride, and showed that lactones rapidly react with up to
2 equiv of hydride and undergo reduction to the diol stage.13

Attempts to brominate spiro compound 6 with NBS and acetic
acid, bromine and acetic acid or bromine and iron (III) bromide
were unsuccessful and resulted only in the recovery of the starting
material.

In summary, we have developed a new route to an interesting
spiro derivative of the 9H-thioxanthene-10,10-dioxide system in
a synthetically viable yield. There is clearly scope to explore the
functional group tolerance in this process and to explore further
reactions of 6.
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